首页> 外文OA文献 >Theoretical modeling insights into elastic wave attenuation mechanisms in marine sediments with pore-filling methane hydrate: Hydrate-bearing effective sediment model
【2h】

Theoretical modeling insights into elastic wave attenuation mechanisms in marine sediments with pore-filling methane hydrate: Hydrate-bearing effective sediment model

机译:具有孔隙填充甲烷水合物的海洋沉积物中弹性波衰减机制的理论建模见解:含水合物的有效沉积物模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The majority of presently exploitable marine methane hydrate reservoirs are likely to host hydrate in disseminated form in coarse grain sediments. For hydrate concentrations below 25–40%, disseminated or pore-filling hydrate does not increase elastic frame moduli, thus making impotent traditional seismic velocity-based methods. Here, we present a theoretical model to calculate frequency-dependent P and S wave velocity and attenuation of an effective porous medium composed of solid mineral grains, methane hydrate, methane gas, and water. The model considers elastic wave energy losses caused by local viscous flow both (i) between fluid inclusions in hydrate and pores and (ii) between different aspect ratio pores (created when hydrate grows); the inertial motion of the frame with respect to the pore fluid (Biot's type fluid flow); and gas bubble damping. The sole presence of pore-filling hydrate in the sediment reduces the available porosity and intrinsic permeability of the sediment affecting Biot's type attenuation at high frequencies. Our model shows that attenuation maxima due to fluid inclusions in hydrate are possible over the entire frequency range of interest to exploration seismology (1–106 Hz), depending on the aspect ratio of the inclusions, whereas maxima due to different aspect ratio pores occur only at sonic to ultrasound frequencies (104–106 Hz). This frequency response imposes further constraints on possible hydrate saturations able to reproduce broadband elastic measurements of velocity and attenuation. Our results provide a physical basis for detecting the presence and amount of pore-filling hydrate in seafloor sediments using conventional seismic surveys.
机译:目前大多数可利用的海洋甲烷水合物储层都可能以粗粒沉积物的形式散布水合物。对于低于25–40%的水合物浓度,分散的或充填水合物的水合物不会增加弹性框架模量,因此无法使用传统的基于地震速度的方法。在这里,我们提供了一个理论模型来计算与频率相关的P和S波速以及由固体矿物质,甲烷水合物,甲烷气体和水组成的有效多孔介质的衰减。该模型考虑了局部黏性流动引起的弹性波能量损失,这些黏性流动既包括(i)水合物中的流体包裹体与孔隙之间,以及(ii)不同纵横比的孔隙(水合物生长时产生)之间的弹性波能量损失;框架相对于孔隙流体的惯性运动(Biot型流体流动);和气泡阻尼。沉积物中唯一存在的孔隙填充水合物会降低沉积物的可用孔隙度和固有渗透率,从而影响Biot在高频下的类型衰减。我们的模型表明,取决于水合物包裹体的长宽比,在水合物中夹杂物引起的衰减最大值可能在整个地震勘探频率范围内(1–106 Hz)而定,而由于长宽比不同而引起的最大值仅出现在孔隙中以超声频率(104–106 Hz)。该频率响应对可能的水合物饱和度施加了进一步的限制,这些水合物饱和度能够再现速度和衰减的宽带弹性测量结果。我们的结果为使用常规地震勘测技术检测海底沉积物中孔隙填充水合物的存在和数量提供了物理基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号